NOTE

ON THE DENSTTY OF SIETS OF VECTORS*

Noga ALON
School of Mathematical Sciences, Tel-Aviv University. Tel-Aviv, Israel

Received 16 February 1982
Revised 30 November 1982

Abstract

Answering a question of Erdös, Sauer [4] and independently Perles and Shelah [5] found the: maximal cardinality of a collection \mathscr{F} of subsets of a set: \mathbf{N} of cardinality \boldsymbol{n} such that for ever: subset $M \subset N$ of cardinality $m|\{C \cap M: C \in \mathscr{F}\}|<2^{m}$. Karpovsky and Milman [3] generalised this result. Here we give a short proof of these results and further extensions.

Let ω be the set of nonnegative integers. For fixed positive integers n, p_{1}, \ldots, p_{n} put $N=\{1,2, \ldots, n\}$ and define

$$
\begin{equation*}
\mathscr{F}=\mathscr{F}\left(n, p_{1}, \ldots, p_{n}\right)=\left\{f: N \rightarrow \omega: f(i)<p_{i} \text { for all } i \in N\right\} . \tag{1}
\end{equation*}
$$

For $f \in \mathscr{F}$ and $I \subset N$ let $\left.P^{I}(f) \equiv f\right|_{1}: I \rightarrow \omega$ be the restriction of f to I. For $\mathscr{R} \subset \mathscr{F}$ define $P^{I}(\mathscr{R})=\left\{P^{I}(f): f \in \mathscr{R}\right\}$. We say that \mathscr{R} is I-densi if $P^{I}(\mathscr{R})=P^{I}(\mathscr{F})$. If S is a family of subsets of N, then \mathscr{R} is S-dense if \mathscr{R} is I-dense for some $I \in S$. The collection \mathscr{F}^{5} defined below is clearly not S-dense:

$$
\begin{align*}
\mathscr{F} S & =\{f \in \mathscr{F}:(\forall I \in S)(\exists i \in I)[f(i)>0]\} \\
& \left(=\left\{f \in \mathscr{F}:(\forall I \in S)\left[P^{l}(f) \neq 0\right]\right) .\right.
\end{align*}
$$

As a corollary of the main restilt of this paper (Theorem i) we show that if \mathscr{K} is not S-dense, then $|\mathscr{R}| \leqslant\left|\mathscr{F}^{S}\right|$. This contains as special cases the results of Sauer [4] and Perles and Shelab [5], and of Karpovski and Milman [3].

Before stating Theorem 1, we need one more definition; $\mathscr{R} \subset \mathscr{F}$ is monotone if $f \in \mathscr{R}, g \in \mathscr{F}$ and $f \leqslant g$ imply $g \in \mathscr{R}$. Note that \mathscr{F}^{s} is monotone and that a monotone family $\mathscr{B} \subset \mathscr{F}$ is not S-dense iff $\mathscr{B} \subset \mathscr{F}^{s}$. (If $P^{I}(f) \equiv 0$ for some $I \in S$ al $\cdot f \in \mathscr{B}$, then the monotonicity of \mathscr{B} implies that \mathscr{B} is I-dunse.)

Theorem 1. For every $\mathscr{R} \subset \mathscr{F}$ there exists a monotone $\mathscr{B} \subset \mathscr{F}$ such that
(a) $|\mathscr{B}|=|\mathscr{R}|$, and
(b) $\left|P^{\prime}(\mathscr{B})\right| \leqslant\left|P^{\prime}(\mathscr{R})\right|$ for all $I \subset N$.

[^0]Proof. Among all sets $\mathscr{B} \subset \mathscr{F}$ that satisfy (a) and (b) let \mathscr{B}_{0} be one for which the sum

$$
\begin{equation*}
M(\mathscr{B})=\sum_{f \in S} \sum_{i=1}^{n} f(i) \tag{3}
\end{equation*}
$$

is maximal. To complete the proof we show that \mathscr{B}_{0} is monotone.
For $1 \leqslant i \leqslant n, 0 \leqslant j<p_{i}-1$ and $f \in \mathscr{F}$ define $\bar{T}_{i j}(f) \in \mathscr{G}$ as follows:

$$
\left(\bar{T}_{i j}(f)\right)(k)= \begin{cases}f(k) & \text { if } k \neq i, \\ f(i) & \text { if } k=i \text { and } f(i) \neq j, \\ i+1 & \text { if } k=i \text { and } f(i)=j\end{cases}
$$

For $f \in \mathscr{B}_{0}$ define

$$
T_{i j}(f)= \begin{cases}\bar{T}_{i i}(f) & \text { if } \bar{T}_{i j}(f) \notin \mathscr{B}_{0} . \\ f & \text { otherwise } .\end{cases}
$$

Thus the effect of the operator $T_{i j}$ is to increase $f(i)$ by 1 . provided $f(i)=j$ but only if the modified f lies outside \mathscr{B}_{0}. Note that \mathscr{B}_{0} is not monotone iff $T_{i i}\left(\mathscr{B}_{1}\right) \neq \mathscr{B}_{0}$ for some $1 \leqslant i \leqslant n$ and $0 \leqslant i=p_{i}-1$.

We now show that $T_{i i}\left(\mathscr{B}_{0}\right)$ satisfies (a) and (b).
(a) It is ensily checked that if $f, g \in \mathscr{B}_{0}$. then $f \neq g$ mplies $T_{i i}(f) \neq T_{i j}(g)$, and thus; $\left|T_{i j}\left(\mathscr{B}_{0}\right)\right|=\left|\mathscr{B}_{0}\right|=|\mathscr{R}|$.
(b) Suppose $I \subset N$. We shall show that $\left|P^{I}\left(T_{i j}\left(\mathscr{B}_{0}\right)\right) \leqslant\left|P^{\prime}\left(\mathscr{B}_{0}\right)\right|\right.$. Iuleed, if $g \in$ $P^{\prime}\left(T_{i j}\left(\mathscr{B}_{0}\right)\right) \backslash P^{\prime}\left(\mathscr{B}_{0}\right)$. it is easily checked that $i \in I$ and $g(i)=;+i$. Define a function $g^{\prime}: I \rightarrow \omega$ by

$$
g^{\prime}(k)= \begin{cases}g(k) & \text { if } k \neq i \\ j & \text { if } k=i\end{cases}
$$

We claim that $g^{\prime} \in P^{\prime}\left(\mathscr{B}_{0}\right) \backslash P^{\prime}\left(\Gamma_{i j}\left(\mathscr{B}_{1}\right)\right)$. Indeed since $\} \in P^{\prime}\left(T_{i i}\left(\mathscr{B}_{0}\right)\right)$ there exists an $f \in \mathscr{B}_{0}$ such that $g=P^{\prime}\left(T_{i j}(f)\right)$. However $g \notin P^{\prime}\left(\mathscr{B}_{10}\right)$ and thus $\widetilde{T}_{i j}(f) \neq f$. Therefor: $f(i)=j$ and $g^{\prime}=P^{\prime}(f) \in P^{\prime}\left(\mathscr{B}_{1}\right)$. If $g^{\prime}=P^{\prime}\left(T_{i j}\left(f^{\prime}\right)\right.$ for sonce $f^{\prime} \in \mathscr{B}_{0}$, then $T_{i j}\left(f^{\prime}\right)=f^{\prime} \in \mathscr{B}_{0}$ (since $\left.g^{\prime}(i)-j \neq j+1\right)$, and thus $P^{\prime}\left(f^{\prime}\right)=g^{\prime}$ and $\bar{T}_{i ;}\left(f^{\prime}\right) \notin \mathscr{B}_{0}$ (since $\left.P^{\prime}\left(\bar{T}_{i j}\left(f^{\prime}\right)\right)=g \notin P^{\prime}\left(\mathscr{B}_{\mathrm{i}}\right)\right)$. Thus $T_{i j}\left(f^{\prime}\right)=\bar{T}_{i j}\left(f^{\prime}\right) \neq f^{\prime}$, a contradiction. 1 his shows that $g^{\prime} \notin P^{\prime}\left(T_{i,}\left(\mathscr{B}_{1}\right)\right)$.

Since the mapping $g \rightarrow g^{\prime}$ is $1-1$, we conclude that $\left|P^{I}\left(T_{i j}\left(\mathscr{G}_{0}\right)\right)!\leqslant\left|P^{\mathbf{l}}\left(\mathscr{B}_{0}\right)\right|\right.$ as clairned, and that $T_{i j}\left(\mathcal{B}_{6}\right)$ satisfied (b).

If $T_{i t}\left(\mathscr{B}_{0}\right) \neq \mathscr{B}_{10}$, then the sum $M\left(\mathscr{B}_{0}\right)$ defined in (3) is strictly smaller than $M\left(T_{11}\left(\mathscr{B}_{1}\right)\right)$, contradicting the choice of \mathscr{B}_{0}. Therefore $T_{i j}\left(\mathscr{B}_{0}\right)=\mathscr{B}_{0}$ for all $1 \leqslant i \leqslant n$ and $0 \leqslant j<p_{1}-1$, and thus \mathscr{B}_{0} is monotone. This completes the proof.

For positive integers p_{1}, \ldots, p_{n} and for a fa:nily S of subsets of N define

$$
\begin{equation*}
f\left(r_{1} ; p_{1}, \ldots, p_{n} ; S\right)=\max \{|\mathscr{R}|: \mathscr{R} \subset \mathscr{F}, \mathscr{R} \text { is not } S \text {-derise }\} . \tag{4}
\end{equation*}
$$

Theorem 1 implies the following corollary.

Corollary 1. For every family S of subsets of $N, f\left(n ; p_{1}, \ldots, p_{n} ; S\right)=\left|\mathscr{F}^{s}\right|$.

Prouf. Clearly $f\left(n ; p_{1}, \ldots, p_{n} ; S\right) \geqslant\left|\mathscr{F}^{s}\right|$. To see the converse inequality suppose $\mathscr{R} \subset \mathscr{F}$ is not S-dense. By Theorem 1 there exists a monotone $\mathscr{A} \subset \mathscr{G}$ that is not S-dense, with $|\mathscr{B}|=|\mathscr{R}|$. By the remark preceding Theorem $1 \mathscr{B} \subset \mathscr{F}^{s}$, and thus $|\mathscr{R}|=|\mathscr{B}| \leqslant\left|\mathscr{F}^{S}\right|$.

Remarks. (1) Suppose $n \geqslant m>0$. Corollary 1, with $p_{1}=p_{2}=\cdots=p_{n}=2$ and $S=\{I \subset N,|I|=m\}$ gives:

$$
f(n ; 2, \ldots, 2 ; S)=\left|\mathscr{F}^{s}\right|=\sum_{i=0}^{m-1}\binom{n}{i}
$$

This is the result of Sauer [4] and Perles and Shelah [5] mentioned in the abstract.
(2) Suípose $n_{1} \geqslant m_{1} \geqslant 1, n_{2} \geqslant m_{2} \geqslant 1, \ldots, n_{s} \geqslant m_{s} \geqslant 1, q_{1}, \ldots, q_{s}>1$. Hor $1 \leqslant$ $i \leqslant s$ define

$$
J_{i}=\left\{\sum_{\nu=1}^{i-1} n_{\nu}+k: 1 \leqslant k \leqslant n_{i}\right\} .
$$

Corollary 1, with $n=\sum_{v=1}^{s} n_{v}, p_{i}=q_{i}$ ior $j \in J_{i}$ and $S=\left\{I \subset N,\left|I \cap J_{i}\right|=m_{i}\right.$ for $1 \leqslant i \leqslant s\}$ gives

$$
\begin{aligned}
& f\left(n ; q_{1}, \ldots, q_{1}, \ldots, q_{s}, \ldots, q_{s} ; s\right) \\
& \quad=\left|\mathscr{F}^{s}\right|=\prod_{i=1}^{s} q_{i}^{n^{\prime}}-\prod_{i=1}^{s} \sum_{i=0}^{n_{i}-m_{1}}\binom{n_{i}}{j}\left(q_{i}-1\right)^{i} .
\end{aligned}
$$

This is the result of Karporsky and Milman [3] meritioned in the abstract.
(3) Theortm 1 contains definitely more than Corollary 1. As an example we state one immediate consequence of it. Suppose $n \equiv 3$, and $\mathscr{F}=\mathscr{F}(n, 2, \ldots, 2)$. Define $h=\max |\mathscr{R}|$, where the maximum is taken over all $\mathscr{R} \subset \mathscr{F}$ such that for every $I \subset N,|I|=3$ implies $\left|P^{\prime}(\mathscr{R})\right| \leqslant 6$ (i.e., $P^{\prime}(\mathscr{R})$ misses at least two different functions $\left.f \in P^{I}(\mathscr{F})\right)$. Then

$$
h=1+n+\left[\frac{1}{4} n^{2}\right] .
$$

The proof follows easily from Theorem 1 and Turan's theorem for triangles (see [1, pp. 294-295]). We omit the details.
(4) Suppose $1 \leqslant m \leqslant n$ and put $\mathscr{F}=g^{\mathscr{r}}(n, 2, \ldots, 2)$. A set $\mathscr{R} \subset \mathscr{F}$ is called m -doubly-dense if there exists an $I \subset N,|I|=m$, such that for every $g \cdot I \rightarrow\{0,1\}$ there exist $f_{1}, f_{2} \in \mathscr{R}$ that satisfy

$$
P^{I}\left(f_{1}\right)=P^{I}\left(f_{2}\right)=g \quad \text { and } \quad P^{N-1}\left(f_{1}+f_{2}\right) \equiv 1 .
$$

Combining the method of this paper with the theorem of Hall and König [1, pp. 52-53] and the theorem of Erdös, Ko and Rado [2] we can prove [6] that the
maximum carclinality of a set $\mathscr{R} \subset \mathscr{F}$ that is not m-doubly-dense is precisely

$$
h(m, n)= \begin{cases}\sum_{i=0}^{(m+n-1) / 2}\binom{n}{i} & \text { if } m+n \text { is odd } \\ \binom{n-1}{\frac{1}{2}(n+m)}+\sum_{i=0}^{(m+n-2) / 2}\binom{n}{i} & \text { if } m+n \text { is even }\end{cases}
$$

This result has some applications in functional analysis. Those will appear in [6].

Note added in proof

P. Frankl (Cin the trace of finite sets, J. Combin. Theory (A) 34 (1983) 41-45) used, independantly, a method similar to ours and proved the assertions of Remarks (1) and (3).

References

[i] B. Bollobás, Extrerna! Graph Theory (Academic Press. London and New Yort., 1978:.
[2] P. Erdis. Chao Ko and R. Rado. Intersection theorems for systems of finite sets. J. Math. Oxford. Sec. 12 (48) (1961, 313-320.
$[3]$ M.G. Karpows: and V.D. Milman. Coordinate density of sets of vectors. Discr Pe Math. 24 (197א) 177-184.
$[4] \mathrm{N}$. Sauer. On the density of families of sets, J. Combin. Theory (A) 13 (1972) 145-i47.
[5] S. Shelah. A combinatorial problem: Stability and order for mociels and theon ex in infiniary lampuages, Pacific J. Math. 41 (1) (1972) 247-261.
[6] N. Alon and V.D. Milman. Embedding of l_{x}^{k} in finite dimensional Banach spancs, to appear.

[^0]: * This paper forms part of a Ph.D Thesis written by the author under the supervision of Prof. M.A Perles from the Hebrew University of Jerusalem.

