NOTE

ON THE DENSITY OF SETS OF VIECTORS*

Noga ALON

School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv, Israel

Received 16 February 1982 Revised 30 November 1982

Answering a question of Erdös, Sauer [4] and independently Perles and Shelah [5] found the maximal cardinality of a collection \mathscr{F} of subsets of a set N of cardinality n such that for every subset $M \subseteq N$ of cardinality m $|\{C \cap M: C \in \mathscr{F}\}| < 2^m$. Karpovsky and Milman [3] generalised this result. Here we give a short proof of these results and further extensions.

Let ω be the set of nonnegative integers. For fixed positive integers n, p_1, \ldots, p_n put $N = \{1, 2, \ldots, n\}$ and define

$$\mathcal{F} = \mathcal{F}(n, p_1, \dots, p_n) = \{f: N \to \omega: f(i) < p_i \text{ for all } i \in N\}.$$
(1)

For $f \in \mathcal{F}$ and $I \subseteq N$ let $P^{I}(f) \equiv f|_{I}: I \to \omega$ be the restriction of f to I. For $\mathfrak{R} \subseteq \mathcal{F}$ define $P^{I}(\mathfrak{R}) = \{P^{I}(f): f \in \mathfrak{R}\}$. We say that \mathfrak{R} is *I*-dense if $P^{I}(\mathfrak{R}) = P^{I}(\mathfrak{F})$. If S is a family of subsets of N, then \mathfrak{R} is *S*-dense if \mathfrak{R} is *I*-dense for some $I \in S$. The collection \mathcal{F}^{S} defined below is clearly not S-dense:

$$\mathcal{F}^{S} = \{ f \in \mathcal{F} : (\forall I \in S) (\exists i \in I) [f(i) > 0] \}$$

$$(= \{ f \in \mathcal{F} : (\forall I \in S) [P^{I}(f) \neq 0] \}). \tag{2}$$

As a corollary of the main result of this paper (Theorem 1) we show that if \mathcal{R} is not S-dense, then $|\mathcal{R}| \leq |\mathcal{F}^{S}|$. This contains as special cases the results of Sauer [4] and Perles and Shelah [5], and of Karpovski and Milman [3].

Before stating Theorem 1, we need one more definition; $\mathfrak{R} \subset \mathscr{F}$ is monotone if $f \in \mathfrak{R}$, $g \in \mathscr{F}$ and $f \leq g$ imply $g \in \mathfrak{R}$. Note that \mathscr{F}^{S} is monotone and that a monotone family $\mathfrak{B} \subset \mathscr{F}$ is not S-dense iff $\mathfrak{B} \subset \mathscr{F}^{S}$. (If $P^{I}(f) \equiv 0$ for some $I \in S$ and $f \in \mathfrak{B}$, then the monotonicity of \mathfrak{B} implies that \mathfrak{B} is *I*-dense.)

Theorem 1. For every $\mathcal{R} \subset \mathcal{F}$ there exists a monotone $\mathcal{B} \subset \mathcal{F}$ such that

(a)
$$|\Re| = |\Re|$$
, and

(b) $|P^{I}(\mathcal{R})| \leq |P^{I}(\mathcal{R})|$ for all $I \subseteq N$.

* This paper forms part of a Ph.D Thesis written by the author under the supervision of Prof. M.A Perles from the Hebrew University of Jerusalem.

0012-365X/83/\$3.00 © 1983, Elsevier Science Publishers B.V. (North-Holland)

Proof. Among all sets $\mathfrak{B} \subset \mathfrak{F}$ that satisfy (a) and (b) let \mathfrak{B}_0 be one for which the sum

$$\mathcal{M}(\mathcal{B}) = \sum_{f \in \mathcal{B}} \sum_{i=1}^{n} f(i)$$
(3)

is maximal. To complete the proof we show that \mathfrak{B}_0 is monotone.

For $1 \le i \le n$, $0 \le j \le p_i - 1$ and $f \in \mathcal{F}$ define $\overline{T}_{ij}(f) \in \mathcal{F}$ as follows:

$$(\bar{T}_{ij}(f))(k) = \begin{cases} f(k) & \text{if } k \neq i, \\ f(i) & \text{if } k = i \text{ and } f(i) \neq j, \\ j+1 & \text{if } k = i \text{ and } f(i) = j. \end{cases}$$

For $f \in \mathcal{B}_0$ define

$$T_{ij}(f) = \begin{cases} \bar{T}_{ij}(f) & \text{if } \bar{T}_{ij}(f) \notin \mathcal{B}_0, \\ f & \text{otherwise.} \end{cases}$$

Thus the effect of the operator T_{ij} is to increase f(i) by 1, provided f(i) = j but only if the modified f lies outside \mathcal{B}_0 . Note that \mathcal{B}_0 is not monotone iff $T_{ij}(\mathcal{B}_0) \neq \mathcal{B}_0$ for some $1 \le i \le n$ and $0 \le j \le p_i - 1$.

We now show that $T_{ii}(\mathcal{B}_0)$ satisfies (a) and (b).

(a) It is easily checked that if $f, g \in \mathfrak{B}_0$, then $f \neq g$ implies $T_{ii}(f) \neq T_{ij}(g)$, and thus $|T_{ij}(\mathfrak{B}_0)| = |\mathfrak{B}_0| = |\mathfrak{R}|$.

(b) Suppose $I \subseteq N$. We shall show that $|P^{I}(T_{ij}(\mathcal{B}_{0})) \leq |P^{I}(\mathcal{B}_{0})|$. Indeed, if $g \in P^{I}(T_{ij}(\mathcal{B}_{0})) \setminus P^{I}(\mathcal{B}_{0})$, it is easily checked that $i \in I$ and g(i) = j + i. Define a function $g': I \rightarrow \omega$ by

$$g'(k) = \begin{cases} g(k) & \text{if } k \neq i, \\ j & \text{if } k = i. \end{cases}$$

We claim that $g' \in P^{I}(\mathcal{B}_{0}) \setminus P^{I}(T_{ij}(\mathcal{B}_{0}))$. Indeed since $g \in P^{I}(T_{ij}(\mathcal{B}_{0}))$ there exists an $f \in \mathcal{B}_{0}$ such that $g = P^{I}(T_{ij}(f))$. However $g \notin P^{I}(\mathcal{B}_{0})$ and thus $T_{ij}(f) \neq f$. Therefore f(i) = j and $g' = P^{I}(f) \in P^{I}(\mathcal{B}_{0})$. If $g' = P^{I}(T_{ij}(f'))$ for some $f' \in \mathcal{B}_{0}$, then $T_{ij}(f') = f' \in \mathcal{B}_{0}$ (since $g'(i) = j \neq j + 1$), and thus $P^{I}(f') = g'$ and $\overline{T}_{ij}(f') \notin \mathcal{B}_{0}$ (since $P^{I}(\overline{T}_{ij}(f')) = g \notin P^{I}(\mathcal{B}_{0})$). Thus $T_{ij}(f') = \widetilde{T}_{ij}(f') \neq f'$, a contradiction. This shows that $g' \notin P^{I}(T_{ij}(\mathcal{B}_{0}))$.

Since the mapping $g \to g'$ is 1-1, we conclude that $|P^{I}(T_{ij}(\mathfrak{B}_{0}))| \leq |P^{I}(\mathfrak{B}_{0})|$ as claired, and that $T_{ij}(\mathfrak{B}_{0})$ satisfied (b).

If $T_{ij}(\mathfrak{B}_0) \neq \mathfrak{B}_0$, then the sum $M(\mathfrak{B}_0)$ defined in (3) is strictly smaller than $M(T_{ij}(\mathfrak{B}_0))$, contradicting the choice of \mathfrak{B}_0 . Therefore $T_{ij}(\mathfrak{B}_0) = \mathfrak{B}_0$ for all $1 \leq i \leq n$ and $0 \leq j < p_i - 1$, and thus \mathfrak{B}_0 is monotone. This completes the proof. \square

For positive integers p_1, \ldots, p_n and for a family S of subsets of N define

$$f(n; p_1, \dots, p_n; \mathbf{S}) = \max\{|\mathcal{R}| : \mathcal{R} \subset \mathcal{F}, \mathcal{R} \text{ is not } \mathbf{S} \text{-der.se}\}.$$
(4)

Theorem 1 implies the following corollary.

200

Corollary 1. For every family S of subsets of N, $f(n; p_1, ..., p_n; S) = |\mathcal{F}^S|$.

Proof. Clearly $f(n; p_1, \ldots, p_n; S) \ge |\mathcal{F}^S|$. To see the converse inequality suppose $\mathcal{R} \subset \mathcal{F}$ is not S-dense. By Theorem 1 there exists a monotone $\mathcal{B} \subset \mathcal{F}$ that is not S-dense, with $|\mathcal{B}| = |\mathcal{R}|$. By the remark preceding Theorem 1 $\mathcal{B} \subset \mathcal{F}^S$, and thus $|\mathcal{R}| = |\mathcal{B}| \le |\mathcal{F}^S|$. \Box

Remarks. (1) Suppose $n \ge m > 0$. Corollary 1, with $p_1 = p_2 = \cdots = p_n = 2$ and $S = \{I \subset N, |I| = m\}$ gives:

$$f(n; 2, ..., 2; S) = |\mathscr{F}^{S}| = \sum_{i=0}^{m-1} {n \choose i}$$

This is the result of Sauer [4] and Perles and Shelah [5] mentioned in the abstract.

(2) Suppose $n_1 \ge m_1 \ge 1$, $n_2 \ge m_2 \ge 1, \ldots, n_s \ge m_s \ge 1$, $q_1, \ldots, q_s > 1$. For $1 \le i \le s$ define

$$J_i = \left\{ \sum_{\nu=1}^{i-1} n_{\nu} + k : \ 1 \le k \le n_i \right\}.$$

Corollary 1, with $n = \sum_{\nu=1}^{s} n_{\nu}$, $p_j = q_i$ for $j \in J_i$ and $S = \{I \subset N, |I \cap J_i| = m_i$ for $1 \le i \le s\}$ gives

$$f(n; q_1, \dots, q_1, \dots, q_s, \dots, q_s; S) = |\mathcal{F}^S| = \prod_{i=1}^{s} q_i^{n_i} - \prod_{i=1}^{s} \sum_{j=0}^{n_i - m_i} {n_i \choose j} (q_i - 1)^j.$$

This is the result of Karpovsky and Milman [3] mentioned in the abstract.

(3) Theorem 1 contains definitely more than Corollary 1. As an example we state one immediate consequence of it. Suppose $n \ge 3$, and $\mathcal{F} = \mathcal{F}(n, 2, ..., 2)$. Define $h = \max |\mathcal{R}|$, where the maximum is taken over all $\mathcal{R} \subset \mathcal{F}$ such that for every $I \subset N$, |I| = 3 implies $|P^{I}(\mathcal{R})| \le 6$ (i.e., $P^{I}(\mathcal{R})$ misses at least two different functions $f \in P^{I}(\mathcal{F})$). Then

$$h = 1 + n + \left[\frac{1}{4}n^2\right].$$

The proof follows easily from Theorem 1 and Turan's theorem for triangles (see [1, pp. 294-295]). We omit the details.

(4) Suppose $1 \le m \le n$ and put $\mathscr{F} = \mathscr{F}(n, 2, ..., 2)$. A set $\mathscr{R} \subseteq \mathscr{F}$ is called *m*doubly-dense if there exists an $I \subseteq N$, |I| = m, such that for every $g: I \to \{0, 1\}$ there exist $f_1, f_2 \in \mathscr{R}$ that satisfy

$$P^{I}(f_{1}) = P^{I}(f_{2}) = g$$
 and $P^{N-I}(f_{1}+f_{2}) \equiv 1$.

Combining the method of this paper with the theorem of Hall and König [1, pp. 52-53] and the theorem of Erdös, Ko and Rado [2] we can prove [6] that the

maximum cardinality of a set $\mathcal{R} \subset \mathcal{F}$ that is not *m*-doubly-dense is precisely

$$h(m, n) = \begin{cases} \sum_{i=0}^{(m+n-1)/2} \binom{n}{i} & \text{if } m+n \text{ is odd,} \\ \binom{n-1}{\frac{1}{2}(n+m)} + \sum_{i=0}^{(m+n-2)/2} \binom{n}{i} & \text{if } m+n \text{ is even.} \end{cases}$$

This result has some applications in functional analysis. Those will appear in [6].

Note added in proof

P. Frankl (On the trace of finite sets, J. Combin. Theory (A) 34 (1983) 41-45) used, independently, a method similar to ours and proved the assertions of Remarks (1) and (3).

References

- [i] B. Bollobás, Extremal Graph Theory (Academic Press, London and New York, 1978).
- [2] P. Erdös, Chao Ko and R. Rado, Intersection theorems for systems of finite sets, J. Math. Oxford, Sec. 12 (48) (1961) 313–320.
- [3] M.G. Karpovsky and V.D. Milman, Coordinate density of sets of vectors, Discrete Math. 24 (1978) 177-184.
- [4] N. Sauer, On the density of families of sets, J. Combin. Theory (A) 13 (1972) 145-147.
- [5] S. Shelah, A combinatorial problem: Stability and order for models and theories in infinitary languages, Pacific J. Math. 41 (1) (1972) 247-261.
- [6] N. Alon and V.D. Milman, Embedding of l_{∞}^{k} in finite dimensional Banach spaces, to appear.